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Abstract

Purpose – This paper presents a new numerical model that, unlike most existing ones, can solve the
whole liquid sloshing, nonlinear, moving boundary problem with free surface undergoing small to
very large deformations without imposing any linearization assumptions.

Design/methodology/approach – The time-dependent, unknown, irregular physical domain is
mapped onto a rectangular computational domain. The explicit form of the mapping function is
unknown and is determined as part of the solution. Temporal discretization is based on one-step
implicit method. Second-order, finite-difference approximations are used for spatial discretizations.

Findings – The performance of the algorithm has been verified through convergence tests.
Comparison between numerical and experimental results has indicated that the algorithm can
accurately predict the sloshing motion of the liquid undergoing large interfacial deformations.

Originality/value – The ability to model liquid sloshing motion under conditions leading to large
interfacial deformations utilizing the model presented in this paper improves our ability to understand
the problem of sloshing motion in tuned liquid dampers (TLDs), which would eventually help in
constructing more effective TLDs.
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Nomenclature
A ¼ amplitude of the external

dynamic excitation, m
b ¼ width of the tank, m
Ca ¼ capillary number
fe ¼ frequency of the applied

external excitation, Hz
f0 ¼ natural frequency of the

structure, Hz
fw ¼ fundamental sloshing frequency

of the contained liquid in tank, Hz
Fr ¼ Froude number
g ¼ gravitational acceleration, m/s2

h ¼ height of the free surface, m
H ¼ height of the initial flat free

surface, m

L ¼ length of the tank, m
P ¼ pressure, Pa
q ¼ any variable
Re ¼ Reynolds number
t ¼ time, s
u,v ¼ velocity components in the

horizontal and vertical
directions, respectively,
m/s

uc ¼ characteristic velocity, m/s
V ¼ volume of the liquid, m3

x,y ¼ Cartesian coordinates
X ¼ time dependent

displacement, m
u ¼ contact angle
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1. Introduction
A tuned liquid damper (TLD) is a passive damping device proven to be effective in
controlling the vibration of structures and systems in many engineering applications.
Unlike active or semi-active dampers, passive dampers do not require any external supply
of power to operate (Soong and Dargush, 1997). The main function of a passive damping
device is to absorb a portion of the input energy associated with external dynamic
excitations acting on a structure, thus minimizing or avoiding structural damages. Other
types of passive dampers include metallic, tuned mass, and viscoelastic dampers.

A TLD consists of one or multiple rigid tanks, partially filled with a liquid, usually
water. The tanks are rigidly attached to the structure. The vibration of the structure
under an external dynamic load causes sloshing motion of the contained liquid.
By tuning the natural frequency of this sloshing motion to the natural frequency of
the structure, the liquid motion imparts inertia forces approximately anti-phase to the
dynamic forces exciting the structure, thereby reducing structural motion. As such,
the attachment of TLDs modifies the frequency response of the structure in a way
similar to increasing its effective damping.

The use of TLDs is increasing due to their many advantages over other
conventional damping devices. TLDs can be used for both small- (wind) and
large-amplitude (earthquake) vibrations. They are easy to install to existing structure,
and need low maintenance and operating cost. TLDs were used in marine vessels to
stabilize against rocking and rolling motions (Watanabe, 1969; Matsuuara et al., 1986),
offshore platforms (Vandiver and Mitone, 1978; Lee and Reddy, 1982), and in tall
structures (Kareem and Sun, 1987; Tamura et al., 1988; Noji et al., 1988; Fujii et al., 1990;
Wakahara et al., 1992; Wakahara, 1993). Although the construction of a TLD is simple,
the liquid sloshing motion inside the tank has a highly nonlinear and complex
behavior. Surface slopes can approach infinity and the liquid may encounter the top
cover in enclosed tanks. The amplitude of the sloshing motion depends on the nature,
amplitude and frequency of the applied external excitation, the geometry of the tank
and the depth and properties of the contained liquid (Koh et al., 1994; Celebi and
Akyildiz, 2002). In order to design an efficient and effective TLD, the sloshing behavior
of the liquid has to be well understood.

The sloshing behavior of liquid in tanks under dynamic loads was studied
extensively through experimental investigations (Cooper, 1960; Abramson, 1966;
Chester, 1968; Miles, 1976; Clough et al., 1978). Numerical modeling of the sloshing
behavior of liquids was investigated mostly by simplified linear theories that are
applicable only to small interfacial deformations. Potential flow theory, which considers
inviscid, irrotational flows, was widely used by many researchers (Nakayama and
Washizu, 1981; Nakayama, 1983; Ohyama and Fujii, 1989; Tosaka and Sugino, 1991;
Chen et al., 1996; Warnitchai and Pinkaew, 1998; Dutta and Laha, 2000). Shallow water

Greek letters
b ¼ error level
1 ¼ aspect ratio
j, h ¼ mapped coordinates
c ¼ stream function
r ¼ density, kg/m3

m ¼ dynamic viscosity, N s/m2

s ¼ surface tension, N/m
V ¼ computational domain
v ¼ vorticity

Subscripts
x, y, t, j, h ¼ partial derivatives with respect

to the variable x, y, t, j, h
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wave theory was also applied by others (Shimizu and Hayama, 1987; Reed et al., 1998),
where the wave height or the amplitude of the interfacial deformation is assumed to be
small compared to the mean depth of the liquid layer, and the horizontal velocity is
uniform throughout the depth. A number of studies (Sun et al., 1989; Fujino et al., 1992;
Sun and Fujino, 1994; Sun et al., 1995) combined the shallow water theory with the
boundary layer theory, where the liquid viscosity is considered only in the boundary
layer region.

An improvement over predictions based on potential flow theory was provided by
Zang et al.(2000) using a linearized form of Navier-Stokes equations by neglecting the
convective acceleration terms. They indicated that liquid viscosity has an important
effect on sloshing motion near rigid walls, especially with excitation frequency near
resonance.

The linear theory is applicable only when the amplitude of interfacial deformations
are expected to be small. This is valid in cases of small external amplitudes or at
frequency of excitation away from the natural frequency of the TLD. Consequently,
when the excitation of the oscillation is near the natural frequency of the TLD, or
excitation amplitude is high, the linear model becomes inadequate (Lepelletier and
Raichlen, 1988).

Ramaswamy et al. (1986) have solved the full nonlinear Navier-Stokes equations
using the Lagrangian finite element and the velocity correction method for
two-dimensional liquid sloshing problems. Only small amplitude oscillation was
considered in the study, where the behavior of the liquid sloshing is linear.

A TLD is usually designed to operate at or near the resonant frequency of the
structure in order to maximize the absorbed and dissipated energy. To predict
accurately sloshing motion inside a TLD, a numerical model should: first, consider all
physical effects (inertia and viscosity), and secondly, be able to solve such moving
boundary problem while allowing large interfacial deformations.

Algorithms for moving boundary problems were reviewed by Floryan and
Rasmussen (1989). Moving free surface can be described either in terms of fixed grids,
adaptive grids, or by applying analytical mapping techniques. In the third approach,
analytical mapping transfers the problem from an irregular physical domain onto a
rectangular computational domain. The mapping function is unknown and has to be
determined as part of the solution procedure. Since this approach is computationally
more efficient and accurate, it has been selected as the base of the present work.

The study starts by describing the mathematical formulation of the sloshing
problem in Section 2. The structure of the applied numerical algorithm is outlined in
Section 3. An overview of the experimental set up used to validate this model is given
in Section 4. A convergence study as well as comparison with experimental results are
presented in Section 5 that is followed by the conclusions summarized in Section 6.

2. Mathematical formulation
Consider a rigid rectangular tank of length L, filled with water to a stationary depth H,
as shown in Figure 1. The coordinate system is attached to the tank with the origin
located at the center of the bottom. The tank is subjected to a general external
harmonic excitation in the horizontal (x) direction, defined by time dependent
displacement X(t). Thereby neglecting the end effects, the motion of the liquid inside
the tank can be assumed to be two-dimensional in the x-y directions.
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The liquid inside the tank is assumed to be Newtonian, viscous, and incompressible.
Thus, the transient two-dimensional motion of the liquid inside the tank is governed by
the continuity and the x- and y- momentum equations. The governing equations as well
as the boundary conditions are non-dimensionalized by introducing the following
dimensionless variables:

x* ¼
x

L
; y* ¼

y

H
; u* ¼

u

uc
; v* ¼

v

1uc
; p* ¼

p

mucL=H 2
; t* ¼

t

H=uc
;

X* ¼
X

H
h* ¼

h

H
:

ð1Þ

where the superscript * denotes dimensionless variables, u and v are the x and
y components of the velocity vector, respectively, p the pressure, t stands for time, m the
dynamic viscosity of the liquid, and the aspect ratio of the liquid layer in the tank is
defined by the dimensionless parameter, 1 ¼ H=L: The characteristic velocity, uc, is
defined by uc ¼

ffiffiffiffiffiffiffi
gH

p
; where g is the gravitational acceleration.

The governing equations in dimensionless form (with the superscript * dropped)
are:

ux þ vy ¼ 0; ð2Þ

Re½ut þ 1ðuux þ vuyÞ� ¼ 2px þ 1 2uxx þ uyy 2 ReX tt; ð3aÞ

12 Re½vt þ 1ðuvx þ vvyÞ� ¼ 2py þ 1 2ð1 2vxx þ vyyÞ2 1 2 Re

Fr2
ð3bÞ

where the subscripts x, y, and t denote partial derivatives with respect to x, y, and t,
respectively, and Xtt is the acceleration due to time dependent known external
excitation. In the above equations, Re and Fr stand for the Reynolds number, and the
Froude number, respectively, defined as follows:

Figure 1.
Physical domain in x, y

coordinates
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Re ¼
rucH

m
; Fr ¼

ucffiffiffiffiffiffi
gL

p : ð4Þ

where r is the density of the liquid. The above governing equations (2) and (3) are
subject to the following boundary conditions:

at x ¼ ^1=2; u ¼ v ¼ 0 ð5Þ

at y ¼ 0; u ¼ v ¼ 0: ð6Þ

The interface is defined by the function h(x), which will be determined as part of the
solution procedure. Boundary conditions at the interface are:

at y ¼ hðx; tÞ; ht þ 1ðuhx 2 vÞ ¼ 0; ð7aÞ

2pþ
212bvy 2 hxuy þ 1 2hxðuxhx 2 vxÞc

1 þ 1 2h2
x

� � ¼
13hxx

Ca 1 þ 12h2
x

� �3=2
; ð7bÞ

212hxðvy 2 uxÞ þ 1 2 12h2
x

� �
ð12vx þ uyÞ ¼ 0: ð7cÞ

where Ca is the capillary number defined by Ca ¼ muc=s and s is the surface tension.
Equations (5) and (6) are the no-penetration and no-slip conditions at the rigid walls

of the tank. The kinematic condition at the free surface is given by equation (7(a)).
Equation (7(b) and (c)) are the dynamic condition at the free surface representing the
balance of the normal and tangential stresses at the interface, respectively. The
deforming free surface must also satisfy the following mass conservation constraint:Z 1=2

21=2

hðx; tÞdx ¼ ;* : ð8Þ

where the dimensionless volume ;* ¼ V=HL with unit dimension perpendicular to
the xy-plane. The problem is closed by specifying the contact conditions between the
free surface and the sidewalls:

hð21=2Þ ¼
tan uL

1
; hð1=2Þ ¼

2tan uR

1
ð9Þ

where the prescribed contact angle u depends on the tank material and the type of
liquid.

Equations (2)-(9) constitute a moving boundary problem, where the location of the
free surface is time dependent and has to be determined as part of the solution.

2.1 Coordinate transformation
The liquid layer inside the tank has a moving free surface which makes it an irregular,
time-dependent solution domain (as defined by h(x,t)). The solution domain V (x, y) is
mapped onto a rectangular computational domain V* (j,h) as shown in Figure 2
permitting use of standard finite-difference discretization techniques for spatial
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derivatives. The explicit form of the mapping function h(x, t) is not known and has to
be determined as part of the numerical procedure. The transformation used in this case
is:

j ¼ x; h ¼
y

hðx; tÞ
: ð10Þ

2.2 Stream function-vorticity formulation
The use of the stream function-vorticity formulation permits a simple enforcement of
the incompressibility condition (equation (2)), which is crucial in the case of a free
boundary problem. The stream function, c, and vorticity, v, in dimensionless form are
defined as follows:

u ¼ cy; v ¼ 2cx; v ¼ 21 2cxx 2 cyy: ð11Þ

The governing equations (2) and (3) in the transformed coordinate system reduce to:

72cþ v ¼ 0; ð12Þ

vt 2
hhtvh

h
þ

1ðchvj 2 cjvhÞ

h
¼

72v

Re
; ð13Þ

where

72 ¼ 1 2 ›2

›j 2
2

21 2hhj

h

›2

›j ›h
þ

1 þ 1 2h 2h2
j

� �
h2

›2

›h2
þ

h12 2h2
j 2 hhjj

� �
h 2

›

›h
: ð14Þ

The boundary conditions (equations (5)-(7)) take the form:

at j ¼ ^1=2; c ¼ cj ¼ 0; ð15Þ

at h ¼ 0; c ¼ ch ¼ 0; ð16Þ

Figure 2.
Computational domain in

j, h coordinates
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at h ¼ 1; ht þ cj ¼ 0; ð17aÞ

2pþ
2 14hjcjj 2 1 þ h2

j

� �
12cjhh

21 þ 1 2hj 1 þ 1 2h2
j 2 1 2hhjj

� �
ch

��� ���
1 þ 1 2h2

j

� �

¼
1 3hjj

Ca 1 þ 12h2
j

� �3=2
; ð17bÞ

2 12 1 2 12h2
j

� �
cjj þ

1 þ 12h2
j

� �2

h 2
chh 2

212hj 1 þ 12h2
j

� �
h

cjh

þ
1 2 1 2 1 2h2

j

� �
hhjj þ 212h2

j 1 þ 1 2h2
j

� �h i
h2

ch ¼ 0:

ð17cÞ

The boundary conditions for v at the solid walls and interface are obtained from
equation (12) and given below:

at j ¼ ^1=2; v ¼ 212cjj ð18aÞ

at h ¼ 0; v ¼ 2
1

h 2
chh ð18bÞ

at h ¼ 1; v ¼ 22 1 þ h2
j

� �21

cjj þ h21 1 þ h2
j

� �21

ð2hjjchÞ ð18cÞ

The normal stress condition (equation (17(b))) involves the value of pressure at the
interface, which has to be determined on the basis of the known solution of the flow
field. Equation (3(a) and (b)) are solved for components of the pressure gradient,
transformed into the (j,h) plane using equation (10), expressed in a form suitable for
the interface ðh ¼ 1Þ; and integrated with respect to j using the trapezoidal rule based
on the same grid as used in the determination of the flow field. More details about the
calculation of the pressure at the interface can be found in Hamed and Floryan (1998).

2.3 Finite-difference discretization
Spatial derivatives are discretized over the rectangular computational domain using
standard second-order finite-difference formulas. Thus, the algorithm is second-order
accurate in space. Hamed and Floryan (1998) have studied one- and two-step implicit,
Crank-Nicolson, trapezoidal temporal discretization schemes for a nonlinear moving
boundary cavity problem and found that the one-step method is self-starting and
numerically stable. Therefore, this discretization method has been used for temporal
derivatives in the present study.

3. The algorithm
The solution procedure is initiated by assuming that all variables are known at time
t ¼ nDt and their values at t ¼ ðnþ 1ÞDt are sought. Here Dt is the time step, and n is
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an index for the time step with n ¼ 0 at t ¼ 0: Assuming a flat interface at t ¼ 0; the
field equations (12) and (13) are solved iteratively keeping the location of the free
surface and the value of the stream function at the free surface unchanged and
enforcing all boundary conditions except the normal stress (equation (17(b))) and the
kinematic conditions (equation (17(a))). This problem will be referred as the
“inner problem” or the “inner solution”. After solving the field equations by inner
iterations, the normal stress condition is used subsequently to determine the new
location of the free surface then the kinematic condition is employed to evaluate the
new value of the stream function at the free surface. This part of the solution will be
referred as the “outer problem” or the “outer solution”. The complete solution
procedure involves iterations between the inner and the outer problems until the
convergence criteria, jqiþ1 2 qij , b1 and jResij , b1 with b1 ¼ 1027 are satisfied at
all grid points. The variable q stands for any of the flow quantities (c, v) and Res
denotes residuum of any of the discretized field equations, and subscript i denotes the
iteration number. The flow chart illustrating this iterative procedure is shown in
Figure 3. More details of the numerical algorithm and the iterative solution procedure
can be found in Hamed and Floryan (1998).

4. Experimental study
An experimental investigation has been carried out by Tait et al. (2001) at the
Boundary-Layer Wind Tunnel Laboratory of the University of Western Ontario using
a prototype of an actual TLD tank. The TLD shown in Figure 4 represents a 1 : 10
model of one of the multiple tanks designed to be attached to a real building having a
fundamental frequency of approximately 0.172 Hz. The dimensions L, b, and H
represent the tank length in the direction of external excitation, the tank width
(perpendicular to excitation) and the still water depth, respectively. The fundamental
sloshing frequency, fw, for the water inside this tank can be calculated according to the
linear wave theory using the following equation (Lamb, 1932):

fw ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pg

L
tanh

pH

L

� �s
ð19Þ

Substituting the values of L and H as given in Figure 4 into the above equation gives fw
< 0.545 Hz. Using dimensional analysis, the fundamental liquid sloshing frequency of
the prototype tank is estimated to be equal to fw=

ffiffiffiffiffi
10

p
¼ 0:172 Hz: This means that the

sloshing frequency of the prototype tank was tuned to the fundamental frequency of
the building. The tuning frequency V, is an important parameter which strongly
influences the performance of a TLD, and is given by V ¼ fw=f 0; where f0 is the
natural frequency of the structure.

A schematic diagram of the experimental set up is shown in Figure 5. The set up
included a rigid support frame attached to a shake table. The TLD was attached to the
top part of the frame using four cables that provided only vertical support for the tank.
The lateral support of the tank was provided by two load cells that connected the
bottom of the tank to the rigid intermediate member of the frame. The data recorded
included the shaking table displacement, the base shear forces developed by both the
TLD and ballast masses and temporal free surface at six locations simultaneously
along the tank using capacitance type wave probes. Details of the experimental study
can be found in Tait et al. (2001).
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Figure 3.
Flow chart for the solution
algorithm

Figure 4.
Tuned liquid damper used
in the experimental study
(dimensions are in mm)
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The frame assembly was subjected to sinusoidal excitation with excitation amplitude
of 2.5 mm. The tests were conducted at the excitation frequency of f e ¼ 0:545 Hz: The
water was quiescent at the start of all tests conducted, and the data were recorded after
the liquid sloshing motion reached a steady-state condition. Steady-state condition was
reached when the interface deformations recorded at the six locations shown in Figure 5
were not changing with time.

5. Algorithm performance
In this section, the numerical model is first assessed for grid convergence. Then the
numerical algorithm is validated by comparing the numerical and the experimental
results. Finally, the effects of the amplitude of the external excitation on the sloshing
amplitude and the base shear force are investigated.

The dimensions of the tank for numerical simulation match exactly the one used in
the experimental study shown in Figure 4. The tank is assumed to be subjected to a
horizontal sinusoidal displacement defined by X ¼ A sinð2pf etÞ; where A is the
amplitude, fe is the frequency of the external excitation in hertz, and t is the time in
second. All numerical results are computed at excitation frequency matching the
natural frequency of the liquid in the tank, i.e. at f e ¼ 0:545 Hz. Since the liquid in the
tank is water, the contact angle at both left and right side walls, u, is assumed to be
zero.

5.1 Grid convergence
The computational time and error in the solution are functions of the grid size The
effect of the grid size on the solution is investigated to determine the optimum size to
get solution with satisfactory accuracy within reasonable computational time. Five
different sets of grids are examined, 11£ 11, 15 £ 15, 21 £ 21, 26 £ 26, and 31 £ 31.

Figure 5.
Shaking table test set up
(location of wave probes
from the left wall of the

tank, P1 ¼ 0.048 m,
P2 ¼ 0.193 m,
P3 ¼ 0.338 m,
P4 ¼ 0.483 m,
P5 ¼ 0.773 m,
P6 ¼ 0.917 m)
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The grid convergence of the algorithm is assessed based on the change in both the
deformation of the free surface and the amount of the base shear force. During this grid
convergence study the size of the time step was kept constant at 0.01 s, which is 1/183
of one period of the external sinusoidal excitation.

The height of the free surface at the left wall and the base shear force after reaching
steady-state using the five different grid sizes, are shown in Figure 6. The horizontal
axis in the figure represents the time relative to the instant at which the motion reached
steady-state, which happened after about 60 s from the initial application of the

Figure 6.
Effect of gird size on the
steady-state: (a) free
surface deformation at the
left wall (x ¼ 2L/2); and
(b) base shear force;
fe¼0.545 Hz, A ¼ 2.5 mm,
Dt ¼ 0.01 s
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external excitation. The figure shows that the solution is converging as the grid size is
being refined. In order to determine the optimum grid size, the solution with grid size
1/30 is considered as the reference solution. The maximum relative changes with
respect to the reference solution in both the height of the free surface at the left wall and
the base shear force are given in Table I. The table shows that the convergence rate is
very fast. The relative changes using the 1/10 coarse grid are about 2 and 7 percent in
both the height of the free surface and the base shear force, respectively. However, the
corresponding relative changes were decreased to less than 1 percent with a grid size of
1/20.

The effect of grid size on the shape of the whole free surface of the sloshing fluid
along the tank length is shown in Figure 7 at two different times, after reaching the
steady-state. The two plots indicate that the coarse grid 1/10 produces a significantly
different solution compared to the reference grid, 1/30. This difference is strongly
reduced using the next grid, 1/15, indicating a fast convergence rate. Because the
relative change in the free surface between grid sizes 1/30 and 1/20 was less than
0.2 percent, it was concluded that grid size 1/20 is sufficient to capture a satisfactory
converged solution.

The size of the time step also influences the accuracy of the numerical solution. The
time step has to be small enough to accommodate the effect of sufficient number of
high vibration modes that contribute to the fluid motion. The effect of time step on the
height of the free surface at the left wall is shown in Figure 8. The figure shows the
steady-state variation in the height of the free surface for three different time steps.
The smallest time step, 0.005 s, represents the most accurate solution. When used as a
reference, the maximum difference in wave height compared to the other two time
steps, 0.02 and 0.01 s, were about 10 and 3.7 percent, respectively. Owing to the
convergent nature of the solution, it was expected that if the time step was further
reduced by a factor of 2 (i.e. using 0.0025 s time step), the difference in the maximum
wave height compared to that obtained with the 0.005 s time step would be less than
3.7 percent, which was considered an acceptable level of accuracy, and therefore, the
time step of 0.005 s was used in this study.

5.2 Algorithm validation
The developed numerical model has been validated by comparing the numerical
results to the corresponding experimental values The numerical results presented
here were obtained using a 21 £ 21 grid, and a time step of 0.005 s. The
amplitude of the sinusoidal excitation is 2.5 mm in both experimental and
numerical studies.

Grid size, Dj ¼ Dh
Relative change in free surface

at left wall (percent)
Relative change in base

shear force (percent)

1/10 2.3 6.9
1/15 0.9 2.0
1/20 0.4 0.6
1/25 0.1 0.15
1/30 0 0

Table I.
Influence of the grid size

on the solution,
fe¼0.545 Hz,

A ¼ 2.5 mm, Dt ¼ 0.01 s
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The numerical and experimental results for the free surface deformation at three
locations along the tank length as well as for base shear force are shown in Figure 9(a)
and (d). The presence of the higher or super harmonics was observed in the
experimental results. The behavior of the free surface is almost identical in both
experimental and numerical results for all three locations shown, except the presence of
the higher harmonics is not very clear in the numerical results. It is expected that the
higher harmonics would not affect the base shear force. The maximum and minimum
interface deformation is almost equal at all three locations. The maximum change in
the free surface at the left wall of the numerical solution is less than 2 percent compared
to the experimental value. There is a very good agreement between the numerically
obtained and experimentally measured base shear force values. The maximum
difference in the numerically predicted base shear force compared to the
experimentally measured value is about 5 percent. The very good agreement
between the experimental and the numerical results in both free surface wave and base
shear force clearly indicates the validity of the developed numerical model.

Figure 7.
Effect of gird size on the
free surface elevation
along the tank length at
time: (a) 60.75 s (point 1,
external displacement,
X ¼ +1.6 mm), maximum
deformation ¼ 11 percent
of H; and (b) 61.75 s (point
2, external displacement,
X ¼ 22.05 mm),
maximum
deformation ¼ 7 percent
of H; fe¼0.545 Hz,
A ¼ 2.5 mm, Dt ¼ 0.01 s
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Figure 8.
Effect of time step size on
free surface at the left wall

(x ¼ 2L/2), fe¼0.545 Hz,
A ¼ 2.5 mm,

Dj ¼ Dh ¼ 1/20

Figure 9.
Steady-state free surface

deformation at: (a)
0.0483 m; (b) 0.193 m;

(c) 0.338 m from left wall;
and (d) base shear force;

fe¼0.545 Hz, Dt ¼ 0.005 s,
Dj ¼ Dh ¼ 1/20
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5.3 Numerical results
The entire time histories, including the transient period of the deformation of the free
surface motion at the left wall as well as the base shear force are shown in Figure 10 for
excitation amplitude of 2.5 mm and frequency of 0.545 Hz. The figure indicates that the
steady-state condition is reached approximately after 60 s. It is also shown that
the maximum values of the transient response (both wave height and base shear force)
are slightly higher than the steady-state values. The maximum transient and
steady-state deformations are around 26 and 23 percent of the initial depth of the water
layer, respectively. The maximum transient base shear force is around 8 percent higher
than the corresponding steady-state value. A three-dimensional plot showing the time
and space variation of the steady-state free surface wave is shown in Figure 11. It can
be seen from both Figures 10(a) and 11 that the free surface deformation is asymmetric
about the initial still water level. The free surface elevation in the upward direction is
larger than that in the downward direction. Such nonlinearity of liquid motion is also
observed experimentally (Figure 9(a) and (b)). It is interesting to notice that although
the maximum upward and downward values of the surface wave are not equal, the
maximum positive and negative values for base shear force remains identical.
This coincides with the experimental findings as shown in Figure 9(d).

The amplitude of the liquid sloshing strongly depends on the nature, amplitude
and frequency of the tank motion. Figure 12 shows variation of the maximum
deformation of the free surface and the maximum base shear force with the
amplitude of external excitation for both the transient and the steady-state domains.
The plots indicate that the difference between the transient-maximum and

Figure 10.
Time histories of the: (a)
free surface deformation at
the left wall (x ¼ 2L/2);
and (b) base shear force;
fe¼0.545 Hz, A ¼ 2.5 mm,
Dt ¼ 0.01 s,
Dj ¼ Dh ¼ 1/20
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steady-state-maximum free surface response increases as the amplitude of the
external excitation increases. The maximum transient deformations with external
excitation amplitudes of 1 and 5 mm are around 12 and 42 percent of the initial depth
of the water level, respectively. The plots also indicate that a nonlinear behavior with
excitation amplitude is more obvious for the liquid sloshing compared to the base

Figure 12.
Effect of amplitude on the

maximum free surface
deformation at the left

wall (x ¼ 2L/2) and base
shear force; fe¼0.545 Hz,

Dt ¼ 0.01 s,
Dj ¼ Dh ¼ 1/20

Figure 11.
Steady-state time histories

of the free surface
deformation along the

tank length, fe¼0.545 Hz,
A ¼ 2.5 mm, Dt ¼ 0.01 s,

Dj ¼ Dh ¼ 1/20
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shear force. The nonlinear behavior of the liquid sloshing is further shown in
Figure 13, where the steady-state deformations of the free surface at the left wall of
the tank are shown for the three levels of excitation amplitudes. The behavior of the
liquid sloshing at smaller amplitude (1.25 mm) is linear which is recognized by the
fact that the free surface deformation is symmetric about the initial still water level.
As the amplitude of the external excitation increases (2.5 and 5 mm), the nonlinear
behavior emerges, where the free surface deformation in the upward direction is
larger than that in the downward direction.

6. Conclusions
A numerical model was developed to simulate the transient, nonlinear,
two-dimensional sloshing motion inside a tank of a tuned liquid damper undergoing
arbitrary interface deformation. The model is based on the vorticity-stream function
formulation. The unknown time-dependent solution domain is mapped onto a fixed
rectangular computational domain with the explicit form of the time-dependent
mapping function to be determined as a part of the solution procedure. To show the
effectiveness of the developed numerical model for large interface deformation,
simulations were performed at the natural frequency of the contained liquid that was
previously tested experimentally under harmonic excitations. The numerical results in
terms of free surface deformation and base shear force are compared with the
corresponding experimental values. Excellent agreement was found between
the numerical and experimental results at such large interface deformation. The
amplitude of the external excitation is found to have a strong effect on the sloshing
behavior of the liquid in the tank. The liquid sloshing is found to be linear at smaller
amplitudes and gradually emerges to a nonlinear type of behavior as the amplitude
level increases. Less nonlinear variation with excitation amplitude is observed for the
base shear force.

Figure 13.
Effect of amplitude on the
steady-state free surface
deformation at the left
wall (x ¼ 2L/2),
fe¼0.545 Hz, Dt ¼ 0.01 s,
Dj ¼ Dh ¼ 1/20
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